Generation X

Flight Dynamics

Marco Concha Dave Folta

July 27, 2000

Flight Dynamics Overview

- ◆ Driving Requirements and Assumptions
- Overview of Orbit Options
- Overview of Transit Options
- Orbit Maintenance
- ◆ Issues and Concerns
- **◆ Summary**

Flight Dynamics Driving Requirements & Assumptions

- Mission Orbit is an L2 Co-linear Libration Orbit,
- ◆ No specified orbit amplitude parameters, e.g. large or small
- Possible use of Lunar Gravity Assist to minimize ΔV budget for small amplitude orbit

Flight Dynamics L2 Orbit Options

◆ Large Lissajous: C3 = -0.677

Direct Transfer L2 Insertion $\Delta V = 0.68 \text{ m/s}$, (y-amplitude ~800K km) First correction $\Delta V = 6.1 \text{ m/s}$

◆ Small Lissajous: C3 = -0.677

Direct Transfer L2 Insertion $\Delta V = 108 \text{ m/s}$

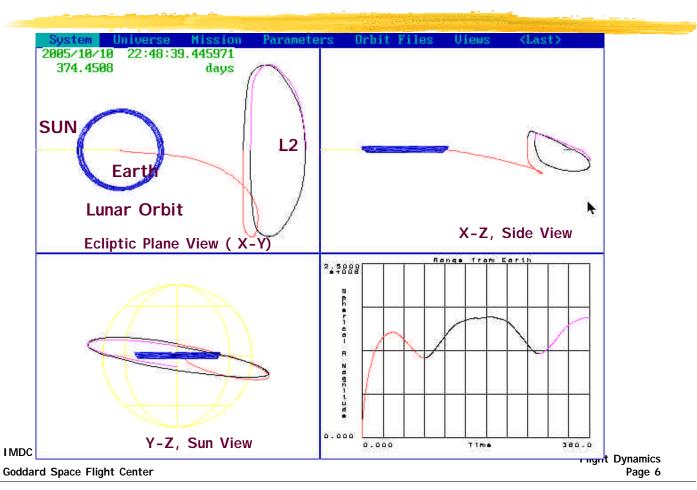
(y-amplitude ~ 400K km) First correction $\Delta V = 23 \text{ m/s}$

◆ Small Lissajous: C3 = -2.17

Lunar Gravity Assist Phasing loop $\Delta V_1 = 5.5 \text{ m/s}$ (y-amplitude ~ 200K km) L2 insertion $\Delta V_2 = 12.5 \text{ m/s}$

Flight Dynamics Transfer to L2 Options

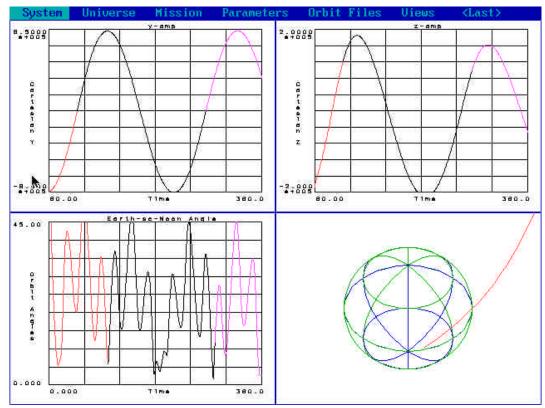
Direct Transfer


• High Thrust, impulsive maneuver

◆ Low Thrust Transfer

- Low Thrust, continuous velocity direction
- Still requires Lissajous Orbit Insertion (LOI)

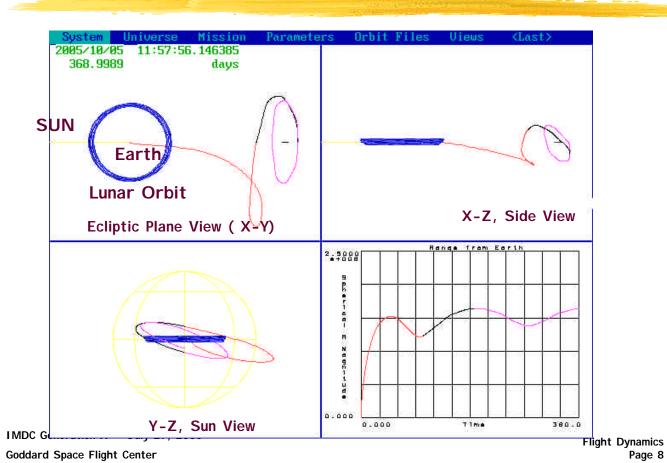
Flight Dynamics Option 1:Large Lissajous/Direct Transfer



Flight Dynamics Option 1:Large Lissajous/Direct Transfer

•**Z**-Amp ~ 200k

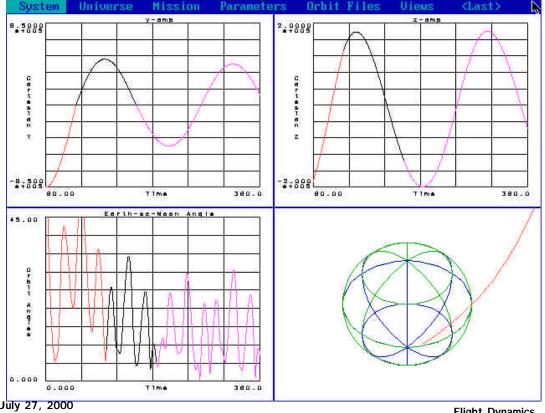
•Sun-S/C-Moon angles of 0-45 degrees



IMDC Generation X - July 27, 2000 Goddard Space Flight Center

Flight Dynamics Page 7

Flight Dynamics Option 2: Small Lissajous/Direct Transfer



Flight Dynamics Option 2: Small Lissajous/Direct Transfer

•Y-Amp ~ 400k

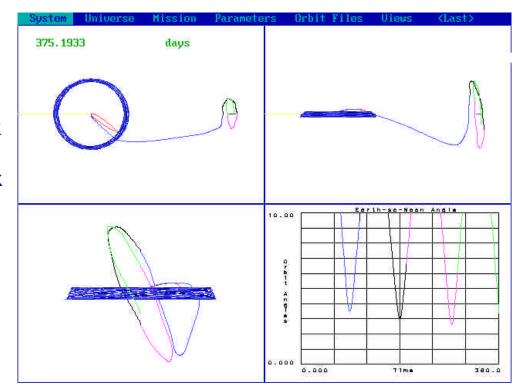
•**Z**-Amp ~ 200k

•Sun-S/C-Moon angles of 0-30 degrees

IMDC Generation X - July 27, 2000

Goddard Space Flight Center

Flight Dynamics Page 9

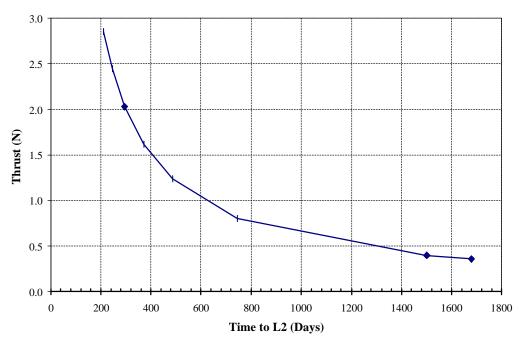


Flight Dynamics

Option 3: Small Lissajous/Lunar Gravity Assist

•Y-Amp ~ 200k

•**Z**-Amp ~ 300k



Flight Dynamics Option 4: Continuous Low Thrust

- Long Transfer Times
- Still requires L2 insertion ΔV, typically a high thrust maneuver
- ◆ LEO = 355 km, 51 deg
- Inclination change (51 deg) managed continuously

Low Thrust Transit LEO to L2 Continuous, Velocity Direction

Flight Dynamics Maintenance and Correction ΔV

- L2 Orbit Maintenance: ΔV ~ <4 m/s per year
- Launch Vehicle Correction ΔV: (error of 3m/s)

Small Liss

 $1^d \sim 20 \text{ m/s}$

 $4^{d} \sim 17 \text{ m/s}$

Lunar Gravity Assist

 $0.33^{d} \sim 22 \text{ m/s}$

 $1^d \sim 40 \text{m/s}$

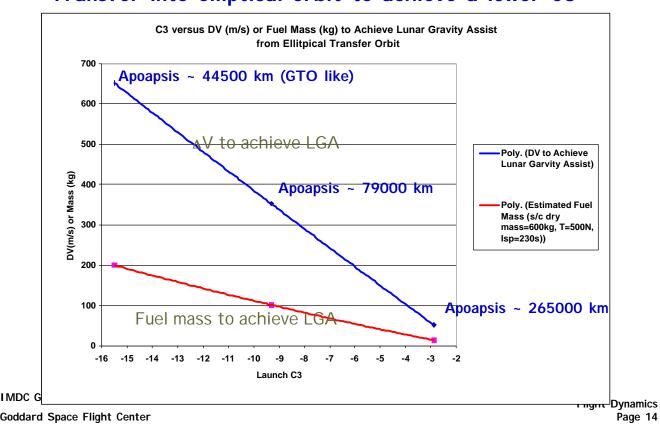
at perigee ~ 10m/s

- Total ΔV with maintenance, corrections, etc.
 - Large Lissajous: ~ 50 m/s,
 - Small Lissajous: ~ 171 m/s
 - Small Lissajous: ~ 60+ m/s (Lunar Gravity Assist)

Flight Dynamics Other Possible Transfer Options/Concerns

Transfer into elliptical orbit to achieve a lower C3

- AV cost of up to ~700 m/s to achieve a Lunar Gravity Assist
- Additional AV cost of 50-100 m/s to achieve a direct transfer
- Does not change final orbit configuration


LGA Phasing loops will require more ΔV (~20m/s?) to expand launch window for timing with lunar assist

Under performance by Onboard Prop system impact, = contingencies

Flight Dynamics Other Possible Transfer Options

Transfer into elliptical orbit to achieve a lower C3

Goddard Space Flight Center

Page 14

Flight Dynamics Additional Trades to Consider

- Constellation Formation Flying
 - On orbit control and relative dynamics of multiple spacecraft at L2 need to be investigated
- Drift Orbit near escape trajectory
 - No insertion issues (L2), constant distance from Earth, no shadow

Flight Dynamics Issues and Concerns

Adjustments to Analysis

Inclination adjust during Transit

Navigation

 For Lissajous final configuration, four 15 minute passes per day ranging should ultimately provide 1 km solution, but two week observation arc likely required.

Transit times

• very high for low thrust options

Flight Dynamics Summary

- Mission Orbit is an L2 Co-linear Libration Orbit
- Direct Launch Window ~ 3 weeks per month with Long and Short parking orbit coast options that effect orbit class
- LGA Launch Window ~ 1-2 weeks per month with Long and Short coast options that effect orbit class and increased phasing loop ΔV budget
- Direct Transfer to mission orbit ~ 100 Days
- Direct Transfer, Large orbit,
 Direct Transfer, Small orbit,
 Lunar Gravity Assist, Small orbit,

Requires Most C3, Smallest ΔV Requires Most C3, Largest ΔV Requires Least C3, Med ΔV , with phasing loop ΔV s to open launch window

Flight Dynamics Summary

- No Earth Shadows in transfer or mission orbit
- Lunar shadows depend on size of orbit amplitudes
- Earth to S/C range ~ 1.25 to 1.75 million Km

IMDC Generation X - July 27, 2000 Goddard Space Flight Center